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ABSTRACT 

Strategy-based games, ranging from Chess 

to Real-Time Strategy (RTS) games, serve 

as a benchmark for artificial intelligence 

(AI), requiring strategic thinking, 

adaptability, long-term planning, and 

decision-making under uncertainty [2]. The 

challenge lies in enabling AI to navigate 

vast decision trees, predict future outcomes, 

model opponents, and adjust strategies 

dynamically [1]. Recent advancements in 

machine learning, particularly in 

Reinforcement Learning (RL), Monte Carlo 

Tree Search (MCTS), and neural networks, 

have significantly improved AI performance 

in these games through experience and self-

play [6]. These techniques allow AI to 

master complex games, adapt to various 

strategies, and make competitive decisions 

against human players. This paper aims to 

develop an AI agent capable of playing 

strategy-based games, such as Chess and 

RTS games, by integrating cutting-edge 

techniques [3]. The agent will leverage RL 

for strategic depth and adaptability, MCTS  

for efficient decision-space navigation, and 

Minimax with Alpha-Beta Pruning for optimal 

move selection. Neural networks will enhance 

pattern recognition, while opponent modelling 

will enable the AI to adjust its strategy based on 

the opponent’s play style [4]. By developing an 

AI that excels in strategy-based games while 

adapting to different environments and 

opponents, this project contributes to AI 

research, game development, and strategic 

problem-solving [7]. The findings have potential 

applications in AI competitions, game design, 

educational tools, and decision-making in 

complex environments [8]. 

Keywords: Artificial Intelligence, 

Reinforcement Learning, Monte Carlo Tree 

Search, Neural Networks, and Minimax 

Algorithm. 

1. INTRODUCTION 

Artificial Intelligence (AI) has seen remarkable 

advancements, particularly in its application to 

games that require strategic thinking and decision-

making [9]. Strategy based games, including 

Chess, Go, and Real-Time Strategy (RTS) 
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games, present an ideal platform for AI 

research due to their complexity, need for 

long-term planning, and dynamic nature [9]. 

These games require players to assess 

multiple possibilities, and adapt to evolving 

situation challenges that also make them a 

compelling field for AI development [12]. 

Historically, AI in gaming was primarily 

rule-based, relying on predefined heuristics 

to make decisions. While effective in 

controlled settings, these approaches lacked 

adaptability and struggled with unexpected 

strategies [21].  

The introduction of machine learning and 

search-based techniques has led to AI 

systems that can learn from experience, 

improve decision [18]. This shift has been 

driven by Reinforcement Learning (RL), 

Monte Carlo Tree Search (MCTS), and 

neural networks, among other 

methodologies [16]. This paper explores the 

development of an AI agent capable of 

learning and optimizing its game play in 

strategy-based environments [18]. By 

leveraging modern AI techniques, the agent 

aims to exhibit intelligent decision-making, 

strategic planning, and adaptability against 

varying opponents. Traditional AI methods 

in gaming often rely on static rule sets, 

limiting their effectiveness in unpredictable 

environments [20]. These approaches 

struggle against dynamic human play styles 

and fail to generalize across different game 

situations [22]. The primary challenge is 

designing an AI that can analyze vast decision 

spaces, anticipate future moves, and adjust its 

strategy dynamically while maintaining 

computational efficiency [14]. To address this, an 

AI system must integrate learning-based methods 

with efficient search algorithms. Reinforcement 

Learning enables adaptive learning from game 

play experiences, while MCTS and Minimax 

with Alpha-Beta Pruning improve decision-

making efficiency[17]. Additionally, 

incorporating neural networks can enhance the 

AI’s ability to recognize patterns and refine its 

strategy. 

The core objective is to develop an AI that a 

compete effectively, adapt to opponents, and 

improve over time without requiring explicit 

programming for every possible scenario [15]. 

Deployment Considerations: The AI will be 

integrated into a game environment where it 

must make decisions efficiently with low 

computational overhead [19]. By addressing 

these areas, the project aims to develop an 

intelligent AI agent capable of competing at a 

high level while demonstrating adaptability and 

efficient decision-making [22]. The results of 

this research could contribute to advancements 

in AI-driven gaming, decision-making 

frameworks, and applications beyond 

entertainment, such as autonomous decision 

systems and AI-driven simulations. 

2. LITERATURE SURVEY  
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2.1 Introduction: Artificial Intelligence 

(AI) has played a significant role in strategy-

based games, enabling computers to 

compete at human and even superhuman 

levels. Over the years, various AI techniques 

have been developed to tackle the challenges 

of decision-making, opponent modeling, and 

game state evaluation. This chapter presents 

a survey of relevant AI methodologies, 

focusing on Reinforcement Learning (RL), 

Monte Carlo Tree Search (MCTS), Neural 

Networks, and Minimax with Alpha-Beta 

Pruning. 

2.2 AI Techniques in Strategy-Based 

Games: Reinforcement Learning is a 

machine learning approach in which an 

agent learns to make decisions by interacting 

with an environment and maximizing 

cumulative rewards. It has been successfully 

applied to games where decision-making is 

sequential. Deep Q-Networks (DQN): 

Introduced by Deep Mind, DQN combines 

Q-learning with deep neural networks to 

handle large state spaces in games. Policy 

Gradient Methods: Algorithms such as 

Proximal Policy Optimization (PPO) and 

Actor-Critic Methods allow the AI to learn 

policies for selecting optimal moves. Self-

Play Learning: Used in advanced AI models, 

self-play allows an AI agent to improve by 

playing against it, refining strategies over 

time. 

2.3. Monte Carlo Tree Search (MCTS): 

Monte Carlo Tree Search is a widely used 

algorithm in AI game-playing, especially in 

games with large state spaces such as Chess and 

Go. It consists of: Selection: Traversing the 

game tree based on a selection policy. 

Expansion: Adding new possible game states. 

Simulation: Running simulated games to 

estimate the value of a move. Back propagation: 

Updating the tree with the results of 

simulations. MCTS has proven to be effective in 

games where an exhaustive search is infeasible. 

It was a key component in AI models like Alpha 

Go, demonstrating its power in high-level 

strategic decision-making. 

2.4. Neural Networks for Game AI: Neural 

networks play a crucial role in modern game AI 

by recognizing patterns, evaluating game 

positions, and predicting optimal moves. 

Minimax Algorithm with Alpha-Beta Pruning 

The Minimax Algorithm is a classical approach 

for decision-making in two-player games with 

perfect information. It evaluates possible game 

states by considering all possible moves and 

counter-moves. However, due to computational 

limitations, Alpha-Beta Pruning is employed to 

reduce the number of states explored, improving 

efficiency while maintaining optimal decision-

making. 

3. EXISTING SYSTEM 

3.1 Existing AI Approaches in Strategy Games: 

The AI approaches used in strategy games have 
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evolved over the years, with several key 

techniques emerging as central to game-playing 

agents [17]. These include Minimax, Monte 

Carlo Tree Search (MCTS), and Reinforcement 

Learning (RL), each having unique strengths and 

weaknesses depending on the type of game [12]. 

However, each of these methods also comes 

with inherent limitations that affect their 

scalability, efficiency, and adaptability in 

dynamic environments [11]. 

Minimax Algorithm: The Minimax algorithm 

is a classic decision-making algorithm used 

primarily in deterministic, two-player, zero-sum 

games (such as Chess and Tic-Tac-Toe). It 

works by exploring all possible moves and 

selecting the one that maximizes the player’s 

minimum payoff, assuming the opponent will 

also play optimally [9]. Alpha-Beta Pruning is 

often applied to improve its efficiency by 

eliminating branches that will not be selected. 

Monte Carlo Tree Search (MCTS): MCTS is a 

popular algorithm for games that involve more 

complexity, such as Go. It builds a game tree 

incrementally by simulating random play 

through (rollouts) from a given state and using 

the results to evaluate moves [5]. The more 

simulations that are performed, the more reliable 

the decision-making becomes. This approach is 

especially useful for games with a high 

branching factor where traditional tree search 

becomes inefficient [14]. 

Reinforcement Learning (RL): Reinforcement 

Learning involves training an agent to make 

decisions based on rewards received from 

interacting with the environment [1]. The agent 

learns from its past actions and continuously adjusts 

its strategy to maximize cumulative reward. In 

games, RL allows the AI to learn strategies through 

trial and error. Deep Q-Networks (DQN), an RL 

technique, is used in scenarios where large state 

spaces exist, enabling the agent to approximate the 

value of actions using deep learning [19]. 

1. Minimax Algorithm: Exponential Growth in 

Search Tree: The Minimax algorithm suffers from 

an exponential growth of the search tree. As the 

number of moves increases, the tree branches out 

exponentially, making it computationally expensive 

to evaluate all possibilities, particularly in games 

with large search spaces like Chess [21]. Ineffective 

for Complex Games: Minimax is highly effective in 

simple games, but as the complexity of the game 

increases (in terms of the number of pieces, moves, 

or strategic possibilities), its performance degrades 

[22]. It struggles to find optimal solutions for games 

with more than a few moves ahead. Limited to 

Deterministic Games: Minimax performs poorly in 

games with randomness or incomplete information 

(stochastic games), as it assumes complete 

knowledge of the game state at every step [12]. 

2. Monte Carlo Tree Search (MCTS): High 

Computational Cost: MCTS relies on simulating 

many random play through to estimate the value of 

moves [5]. The number of simulations required for 

good decision-making is very high, leading to 

significant computational overhead, especially for 

large games. Memory Overhead: The memory 

required to store the outcomes of numerous 

simulations can be substantial, limiting its scalability 

and making it less practical for games with large 
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state spaces. Real-Time Decision Making: 

MCTS,  

while effective in turn-based games, struggles to 

make timely decisions in real-time strategy 

games [8]. The required simulations make it too 

slow for real-time applications, which is a 

critical limitation in fast-paced games.  

3. Reinforcement Learning (RL): Slow 

Training: RL algorithms require a large number 

of interactions with the environment (games or 

simulations) to learn an optimal policy [9]. This 

can make training extremely slow, especially in 

complex games with large state spaces, as the 

agent needs to explore many different strategies 

before it converges. Exploration vs Exploitation 

Dilemma: RL agents often struggle with the 

exploration-exploitation trade off. In the early 

stages of training, the agent might explore 

suboptimal moves, leading to inefficient 

learning [10]. Balancing exploration and 

exploitation is a challenging aspect, especially in 

games that require long-term planning. Data and 

Resource Intensive: Training RL agents requires 

vast amounts of data and computational 

resources [4]. The agent must play numerous 

games or simulations to converge on an optimal 

strategy, making the approach resource-heavy 

and time-consuming. 

4. PROPOSED SYSTEMS   

The system design of the AI agent for strategy-

based games focuses on creating a structured 

framework that enables intelligent decision-

making, adaptability, and efficient game play 

[21]. The AI agent is designed to analyze the 

game environment, evaluate potential moves, predict 

opponent strategies, and continuously improve its 

decision-making through learning mechanisms. This 

section provides an overview of the system’s 

architecture, data flow, AI methodologies, and 

interactions between different components. 

 

Fig: 1 System Design 

 

 

4.1 System Architecture: The AI agent follows a 

modular architecture to ensure flexibility, scalability, 

and efficient processing. The key modules include: 

Game Environment Module: Maintains the game 

state, enforces rules, and determines legal moves. AI 

Decision-Making Module: Evaluates possible 

moves, predicts outcomes, and selects the best 
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action. Learning Module: Incorporates 

techniques such as reinforcement learning, 

Monte Carlo Tree Search (MCTS), and Minimax 

with Alpha-Beta Pruning for continuous 

improvement. Opponent Modeling Module: 

Analyzes the playing style of opponents and 

adapts strategies accordingly. User Interface 

(UI) Module: Provides a visual representation of 

the game state, allowing human interaction and 

move tracking. 

4.2. The system is structured in a layered 

approach for better organization and efficiency: 

Application Layer: Handles user interactions and 

manages game inputs/outputs. Processing Layer: 

Executes AI algorithms, decision-making, and 

strategy computations. Data Layer: Stores game 

history, learning models, and relevant datasets 

for improving AI performance. 

4.3 Data Flow and Processing: The AI 

processes data through a structured pipeline, 

ensuring real-time decision-making and efficient 

game play. Game State Representation: The 

current state of the game is stored in a structured 

format, allowing quick analysis and 

computation. Move Generation: The AI 

identifies all possible legal moves based on the 

game rules. Move Evaluation: Different 

algorithms such as MCTS, Minimax, and 

reinforcement learning analyze each possible 

move.  

4.4 AI Decision-Making Process: The AI 

decision-making process integrates multiple 

techniques to achieve optimal game play: Monte 

Carlo Tree Search (MCTS): Simulates multiple 

future game scenarios to evaluate the best move. It 

balances exploration (trying new strategies) and 

exploitation (using known successful moves). 

Minimax with Alpha-Beta Pruning: Evaluates 

possible future game states under the assumption 

that the opponent will always play optimally. Alpha-

Beta pruning helps reduce unnecessary 

computations, making the process more efficient. 

Reinforcement Learning (RL): Uses experience-

based learning to refine the AI’s strategy by 

rewarding successful decisions and discouraging 

poor choices. Opponent Modelling: Analyzes past 

moves of the opponent, identifies patterns, and 

dynamically adjusts its strategy to counter different 

play styles.  

4.5 Interaction between AI and Game 

Environment: The AI interacts with the game 

environment in a continuous feedback loop: The 

player makes a move, updating the game state. The 

AI analyzes the updated state and determines the 

best response. The AI executes the move, leading to 

a new game state. This process repeats until the 

game concludes. 

5. CONCLUSION    

The development of an AI agent for a strategy-

based game has been an engaging and 

challenging project that integrates artificial 

intelligence with game design principles. The 

project aimed to create an AI system capable of 

making intelligent decisions, adapting to 

different game play scenarios, and providing a 

dynamic, competitive experience for players. 

Leveraging advanced techniques like Monte 
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Carlo Tree Search (MCTS), Deep Q-

Networks (DQN), and reinforcement 

learning, the AI agent was designed to not 

only perform strategically but also evolve by 

learning from interactions with the game 

environment. 

The first and foremost challenge in building 

such an AI was ensuring that it could make 

optimal decisions based on the game state 

and the actions of other players. Monte 

Carlo Tree Search was employed to evaluate 

different future game states by simulating 

potential moves and their consequences. 

This method allowed the AI to consider 

multiple paths and select the most promising 

one. Reinforcement learning technique 

further enhanced the agent’s ability to adapt 

over time by learning from past experiences 

and gradually improving its strategies. 

Through these methods, the AI agent was 

able to predict, adapt, and make decisions 

that are contextually relevant, demonstrating 

a significant leap in the sophistication of AI 

in gaming. 

A key element of the project was ensuring 

that the AI agent could model and respond 

to the strategies employed by different 

opponents. Unlike traditional AI, which 

often follows a fixed set of rules, the agent 

had to be capable of recognizing patterns in 

the opponent's behaviour and adapting 

accordingly. This adaptive behaviour 

ensured that the game did not become 

predictable or repetitive, maintaining player 

interest and challenge. 
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