

Fuzzy Systems and Soft Computing

ISSN : 1819-4362

AI AGENT FOR A STRATEGY-BASED GAME

1S.Santhi Priya, 2 N. Sri Ranga Sai Saranya,3 N. Naveen Kumar,4A. Ravi, 5P. Venkat

1Assoc. Professor, Department of CSE-AI

2,3,4,5 UG Scholar, Department of CSE-AI

Chalapathi Institute of Technology, Guntur, Andhra Pradesh, India-522016

ABSTRACT

Strategy-based games, ranging from Chess

to Real-Time Strategy (RTS) games, serve

as a benchmark for artificial intelligence

(AI), requiring strategic thinking,

adaptability, long-term planning, and

decision-making under uncertainty [2]. The

challenge lies in enabling AI to navigate

vast decision trees, predict future outcomes,

model opponents, and adjust strategies

dynamically [1]. Recent advancements in

machine learning, particularly in

Reinforcement Learning (RL), Monte Carlo

Tree Search (MCTS), and neural networks,

have significantly improved AI performance

in these games through experience and self-

play [6]. These techniques allow AI to

master complex games, adapt to various

strategies, and make competitive decisions

against human players. This paper aims to

develop an AI agent capable of playing

strategy-based games, such as Chess and

RTS games, by integrating cutting-edge

techniques [3]. The agent will leverage RL

for strategic depth and adaptability, MCTS

for efficient decision-space navigation, and

Minimax with Alpha-Beta Pruning for optimal

move selection. Neural networks will enhance

pattern recognition, while opponent modelling

will enable the AI to adjust its strategy based on

the opponent’s play style [4]. By developing an

AI that excels in strategy-based games while

adapting to different environments and

opponents, this project contributes to AI

research, game development, and strategic

problem-solving [7]. The findings have potential

applications in AI competitions, game design,

educational tools, and decision-making in

complex environments [8].

Keywords: Artificial Intelligence,

Reinforcement Learning, Monte Carlo Tree

Search, Neural Networks, and Minimax

Algorithm.

1. INTRODUCTION

Artificial Intelligence (AI) has seen remarkable

advancements, particularly in its application to

games that require strategic thinking and decision-

making [9]. Strategy based games, including

Chess, Go, and Real-Time Strategy (RTS)

192 Vol.20, No.01(I), January-June: 2025

games, present an ideal platform for AI

research due to their complexity, need for

long-term planning, and dynamic nature [9].

These games require players to assess

multiple possibilities, and adapt to evolving

situation challenges that also make them a

compelling field for AI development [12].

Historically, AI in gaming was primarily

rule-based, relying on predefined heuristics

to make decisions. While effective in

controlled settings, these approaches lacked

adaptability and struggled with unexpected

strategies [21].

The introduction of machine learning and

search-based techniques has led to AI

systems that can learn from experience,

improve decision [18]. This shift has been

driven by Reinforcement Learning (RL),

Monte Carlo Tree Search (MCTS), and

neural networks, among other

methodologies [16]. This paper explores the

development of an AI agent capable of

learning and optimizing its game play in

strategy-based environments [18]. By

leveraging modern AI techniques, the agent

aims to exhibit intelligent decision-making,

strategic planning, and adaptability against

varying opponents. Traditional AI methods

in gaming often rely on static rule sets,

limiting their effectiveness in unpredictable

environments [20]. These approaches

struggle against dynamic human play styles

and fail to generalize across different game

situations [22]. The primary challenge is

designing an AI that can analyze vast decision

spaces, anticipate future moves, and adjust its

strategy dynamically while maintaining

computational efficiency [14]. To address this, an

AI system must integrate learning-based methods

with efficient search algorithms. Reinforcement

Learning enables adaptive learning from game

play experiences, while MCTS and Minimax

with Alpha-Beta Pruning improve decision-

making efficiency[17]. Additionally,

incorporating neural networks can enhance the

AI’s ability to recognize patterns and refine its

strategy.

The core objective is to develop an AI that a

compete effectively, adapt to opponents, and

improve over time without requiring explicit

programming for every possible scenario [15].

Deployment Considerations: The AI will be

integrated into a game environment where it

must make decisions efficiently with low

computational overhead [19]. By addressing

these areas, the project aims to develop an

intelligent AI agent capable of competing at a

high level while demonstrating adaptability and

efficient decision-making [22]. The results of

this research could contribute to advancements

in AI-driven gaming, decision-making

frameworks, and applications beyond

entertainment, such as autonomous decision

systems and AI-driven simulations.

2. LITERATURE SURVEY

193 Vol.20, No.01(I), January-June: 2025

2.1 Introduction: Artificial Intelligence

(AI) has played a significant role in strategy-

based games, enabling computers to

compete at human and even superhuman

levels. Over the years, various AI techniques

have been developed to tackle the challenges

of decision-making, opponent modeling, and

game state evaluation. This chapter presents

a survey of relevant AI methodologies,

focusing on Reinforcement Learning (RL),

Monte Carlo Tree Search (MCTS), Neural

Networks, and Minimax with Alpha-Beta

Pruning.

2.2 AI Techniques in Strategy-Based

Games: Reinforcement Learning is a

machine learning approach in which an

agent learns to make decisions by interacting

with an environment and maximizing

cumulative rewards. It has been successfully

applied to games where decision-making is

sequential. Deep Q-Networks (DQN):

Introduced by Deep Mind, DQN combines

Q-learning with deep neural networks to

handle large state spaces in games. Policy

Gradient Methods: Algorithms such as

Proximal Policy Optimization (PPO) and

Actor-Critic Methods allow the AI to learn

policies for selecting optimal moves. Self-

Play Learning: Used in advanced AI models,

self-play allows an AI agent to improve by

playing against it, refining strategies over

time.

2.3. Monte Carlo Tree Search (MCTS):

Monte Carlo Tree Search is a widely used

algorithm in AI game-playing, especially in

games with large state spaces such as Chess and

Go. It consists of: Selection: Traversing the

game tree based on a selection policy.

Expansion: Adding new possible game states.

Simulation: Running simulated games to

estimate the value of a move. Back propagation:

Updating the tree with the results of

simulations. MCTS has proven to be effective in

games where an exhaustive search is infeasible.

It was a key component in AI models like Alpha

Go, demonstrating its power in high-level

strategic decision-making.

2.4. Neural Networks for Game AI: Neural

networks play a crucial role in modern game AI

by recognizing patterns, evaluating game

positions, and predicting optimal moves.

Minimax Algorithm with Alpha-Beta Pruning

The Minimax Algorithm is a classical approach

for decision-making in two-player games with

perfect information. It evaluates possible game

states by considering all possible moves and

counter-moves. However, due to computational

limitations, Alpha-Beta Pruning is employed to

reduce the number of states explored, improving

efficiency while maintaining optimal decision-

making.

3. EXISTING SYSTEM

3.1 Existing AI Approaches in Strategy Games:

The AI approaches used in strategy games have

194 Vol.20, No.01(I), January-June: 2025

evolved over the years, with several key

techniques emerging as central to game-playing

agents [17]. These include Minimax, Monte

Carlo Tree Search (MCTS), and Reinforcement

Learning (RL), each having unique strengths and

weaknesses depending on the type of game [12].

However, each of these methods also comes

with inherent limitations that affect their

scalability, efficiency, and adaptability in

dynamic environments [11].

Minimax Algorithm: The Minimax algorithm

is a classic decision-making algorithm used

primarily in deterministic, two-player, zero-sum

games (such as Chess and Tic-Tac-Toe). It

works by exploring all possible moves and

selecting the one that maximizes the player’s

minimum payoff, assuming the opponent will

also play optimally [9]. Alpha-Beta Pruning is

often applied to improve its efficiency by

eliminating branches that will not be selected.

Monte Carlo Tree Search (MCTS): MCTS is a

popular algorithm for games that involve more

complexity, such as Go. It builds a game tree

incrementally by simulating random play

through (rollouts) from a given state and using

the results to evaluate moves [5]. The more

simulations that are performed, the more reliable

the decision-making becomes. This approach is

especially useful for games with a high

branching factor where traditional tree search

becomes inefficient [14].

Reinforcement Learning (RL): Reinforcement

Learning involves training an agent to make

decisions based on rewards received from

interacting with the environment [1]. The agent

learns from its past actions and continuously adjusts

its strategy to maximize cumulative reward. In

games, RL allows the AI to learn strategies through

trial and error. Deep Q-Networks (DQN), an RL

technique, is used in scenarios where large state

spaces exist, enabling the agent to approximate the

value of actions using deep learning [19].

1. Minimax Algorithm: Exponential Growth in

Search Tree: The Minimax algorithm suffers from

an exponential growth of the search tree. As the

number of moves increases, the tree branches out

exponentially, making it computationally expensive

to evaluate all possibilities, particularly in games

with large search spaces like Chess [21]. Ineffective

for Complex Games: Minimax is highly effective in

simple games, but as the complexity of the game

increases (in terms of the number of pieces, moves,

or strategic possibilities), its performance degrades

[22]. It struggles to find optimal solutions for games

with more than a few moves ahead. Limited to

Deterministic Games: Minimax performs poorly in

games with randomness or incomplete information

(stochastic games), as it assumes complete

knowledge of the game state at every step [12].

2. Monte Carlo Tree Search (MCTS): High

Computational Cost: MCTS relies on simulating

many random play through to estimate the value of

moves [5]. The number of simulations required for

good decision-making is very high, leading to

significant computational overhead, especially for

large games. Memory Overhead: The memory

required to store the outcomes of numerous

simulations can be substantial, limiting its scalability

and making it less practical for games with large

195 Vol.20, No.01(I), January-June: 2025

state spaces. Real-Time Decision Making:

MCTS,

while effective in turn-based games, struggles to

make timely decisions in real-time strategy

games [8]. The required simulations make it too

slow for real-time applications, which is a

critical limitation in fast-paced games.

3. Reinforcement Learning (RL): Slow

Training: RL algorithms require a large number

of interactions with the environment (games or

simulations) to learn an optimal policy [9]. This

can make training extremely slow, especially in

complex games with large state spaces, as the

agent needs to explore many different strategies

before it converges. Exploration vs Exploitation

Dilemma: RL agents often struggle with the

exploration-exploitation trade off. In the early

stages of training, the agent might explore

suboptimal moves, leading to inefficient

learning [10]. Balancing exploration and

exploitation is a challenging aspect, especially in

games that require long-term planning. Data and

Resource Intensive: Training RL agents requires

vast amounts of data and computational

resources [4]. The agent must play numerous

games or simulations to converge on an optimal

strategy, making the approach resource-heavy

and time-consuming.

4. PROPOSED SYSTEMS

The system design of the AI agent for strategy-

based games focuses on creating a structured

framework that enables intelligent decision-

making, adaptability, and efficient game play

[21]. The AI agent is designed to analyze the

game environment, evaluate potential moves, predict

opponent strategies, and continuously improve its

decision-making through learning mechanisms. This

section provides an overview of the system’s

architecture, data flow, AI methodologies, and

interactions between different components.

Fig: 1 System Design

4.1 System Architecture: The AI agent follows a

modular architecture to ensure flexibility, scalability,

and efficient processing. The key modules include:

Game Environment Module: Maintains the game

state, enforces rules, and determines legal moves. AI

Decision-Making Module: Evaluates possible

moves, predicts outcomes, and selects the best

196 Vol.20, No.01(I), January-June: 2025

action. Learning Module: Incorporates

techniques such as reinforcement learning,

Monte Carlo Tree Search (MCTS), and Minimax

with Alpha-Beta Pruning for continuous

improvement. Opponent Modeling Module:

Analyzes the playing style of opponents and

adapts strategies accordingly. User Interface

(UI) Module: Provides a visual representation of

the game state, allowing human interaction and

move tracking.

4.2. The system is structured in a layered

approach for better organization and efficiency:

Application Layer: Handles user interactions and

manages game inputs/outputs. Processing Layer:

Executes AI algorithms, decision-making, and

strategy computations. Data Layer: Stores game

history, learning models, and relevant datasets

for improving AI performance.

4.3 Data Flow and Processing: The AI

processes data through a structured pipeline,

ensuring real-time decision-making and efficient

game play. Game State Representation: The

current state of the game is stored in a structured

format, allowing quick analysis and

computation. Move Generation: The AI

identifies all possible legal moves based on the

game rules. Move Evaluation: Different

algorithms such as MCTS, Minimax, and

reinforcement learning analyze each possible

move.

4.4 AI Decision-Making Process: The AI

decision-making process integrates multiple

techniques to achieve optimal game play: Monte

Carlo Tree Search (MCTS): Simulates multiple

future game scenarios to evaluate the best move. It

balances exploration (trying new strategies) and

exploitation (using known successful moves).

Minimax with Alpha-Beta Pruning: Evaluates

possible future game states under the assumption

that the opponent will always play optimally. Alpha-

Beta pruning helps reduce unnecessary

computations, making the process more efficient.

Reinforcement Learning (RL): Uses experience-

based learning to refine the AI’s strategy by

rewarding successful decisions and discouraging

poor choices. Opponent Modelling: Analyzes past

moves of the opponent, identifies patterns, and

dynamically adjusts its strategy to counter different

play styles.

4.5 Interaction between AI and Game

Environment: The AI interacts with the game

environment in a continuous feedback loop: The

player makes a move, updating the game state. The

AI analyzes the updated state and determines the

best response. The AI executes the move, leading to

a new game state. This process repeats until the

game concludes.

5. CONCLUSION

The development of an AI agent for a strategy-

based game has been an engaging and

challenging project that integrates artificial

intelligence with game design principles. The

project aimed to create an AI system capable of

making intelligent decisions, adapting to

different game play scenarios, and providing a

dynamic, competitive experience for players.

Leveraging advanced techniques like Monte

197 Vol.20, No.01(I), January-June: 2025

Carlo Tree Search (MCTS), Deep Q-

Networks (DQN), and reinforcement

learning, the AI agent was designed to not

only perform strategically but also evolve by

learning from interactions with the game

environment.

The first and foremost challenge in building

such an AI was ensuring that it could make

optimal decisions based on the game state

and the actions of other players. Monte

Carlo Tree Search was employed to evaluate

different future game states by simulating

potential moves and their consequences.

This method allowed the AI to consider

multiple paths and select the most promising

one. Reinforcement learning technique

further enhanced the agent’s ability to adapt

over time by learning from past experiences

and gradually improving its strategies.

Through these methods, the AI agent was

able to predict, adapt, and make decisions

that are contextually relevant, demonstrating

a significant leap in the sophistication of AI

in gaming.

A key element of the project was ensuring

that the AI agent could model and respond

to the strategies employed by different

opponents. Unlike traditional AI, which

often follows a fixed set of rules, the agent

had to be capable of recognizing patterns in

the opponent's behaviour and adapting

accordingly. This adaptive behaviour

ensured that the game did not become

predictable or repetitive, maintaining player

interest and challenge.

REFERENCES

[1] Kommineni, K.K., Prasad, A. Enhancing

Data Security and Privacy in SDN-Enabled

MANETs Through Improved Data Aggregation

Protection and Secrecy. Wireless Pers Commun

(2024). https://doi.org/10.1007/s11277-024-

11635-w

[2] Kumar, K. K., Kumar, S. G. B., Rao, S. G.

R., & Sydulu, S. S. J. (2017, November). Safe

and high secured ranked keyword searchover an

outsourced cloud data. In 2017 International

Conference on Inventive Computing and

Informatics (ICICI) (pp. 20-25). IEEE.

 [3] Dr.K.Sujatha, Dr.Kalyankumar Dasari , S.

N. V. J. Devi Kosuru , Nagireddi Surya Kala ,

Dr. Maithili K , Dr.N.Krishnaveni, “ Anomaly

Detection In Next-Gen Iot:Giant Trevally

Optimized Lightweight Fortified Attentional

Convolutional Network,” Journal of Theoretical

and Applied Information Technology, 15th

January 2025. Vol.103. No.1,pages:22-39.

[4] Kalyankumar Dasari*, Dr. K. Venkatesh

Sharma, “Analyzing the Role of Mobile Agent in

Intrusion Detection System”, JASRAE, vol :15,

Pages: 566-573,2018.

[5] Kalyan Kumar Dasari&, M Prabhakar,

“Professionally Resolve the Password Security

knowledge in the Contexts of Technology”,

IJCCIT, Vol:3, Issue:1, 2015.

[6] S Deepajothi, Kalyankumar Dasari, N

Krishnaveni, R Juliana, Neeraj Shrivastava,

Kireet Muppavaram, “Predicting Software

Energy Consumption Using Time Series-Based

Recurrent Neural Network with Natural

Language Processing on Stack Overflow Data”,

2024 Asian Conference on Communication and

Networks (ASIANComNet), Pages:1-6,

Publisher: IEEE.

[7] S Neelima, Kalyankumar Dasari, A

https://doi.org/10.1007/s11277-024-11635-w
https://doi.org/10.1007/s11277-024-11635-w
https://scholar.google.com/scholar?cluster=5493004583446295429&hl=en&oi=scholarr
https://scholar.google.com/scholar?cluster=5493004583446295429&hl=en&oi=scholarr
https://ieeexplore.ieee.org/abstract/document/10811023/
https://ieeexplore.ieee.org/abstract/document/10811023/
https://ieeexplore.ieee.org/abstract/document/10811023/
https://ieeexplore.ieee.org/abstract/document/10811023/

198 Vol.20, No.01(I), January-June: 2025

Lakshmanarao, Peluru Janardhana Rao,

Madhan Kumar Jetty, “An Efficient Deep

Learning framework with CNN and RBM for

Native Speech to Text Translation”, 2024 3rd

International Conference for Advancement in

Technology (ICONAT), Pages: 1-6,Publisher

:IEEE.

[8] A Lakshmanarao, P Bhagya Madhuri,

Kalyankumar Dasari, Kakumanu Ashok

Babu, Shaik Ruhi Sulthana, “An Efficient

Android Malware Detection Model using

Convnets and Resnet Models”, 2024

International Conference on Intelligent

Algorithms for Computational Intelligence

Systems (IACIS), Pages :1-6, Publisher

:IEEE

[9] Kommineni, K. K., Pilli, R. B., Tejaswi,

K., & Siva, P. V. (2023). Attention-based

Bayesian inferential imagery captioning

maker. Materials Today: Proceedings.

[10] “Customer Churn Prediction in

Subscription- Based Businesses Using

Machine Learning”,

https://www.sciencedirect.com/science/articl

e/pii/S1877050919315523.

[11] "Predicting Customer Churn with

Machine Learning – A Systematic Review":

https://arxiv.org/abs/2001.01537,

[12] Dr.D.Kalyankumar, Kota Nanisai

Krishna, Gorantla Nagarjuna,

PuvvadaVenkata Naga Sai Jagadesh Kumar,

Modepalli Yeswanth Chowdary, “Email

Phishing Simulations Serve as a Valuable

Tool in Fostering a Culture of Cyber security

Awareness”, IJMTST, Vol: 10, Issue: 02,

Pages:151-157, 2024.

[13] "Deep Learning for Customer Retention

in Subscription-Based Services":

https://www.sciencedirect.com/science/articl

e/pii/S095741742100587X

[14] Dr.D.Kalyankumar, Muhammad

Shaguftha, Putti Venkata Sujinth,

Mudraboyina Naga Praveen Kumar, Namburi

Karthikeya, “Implementing a Chatbot with

End-To-End Encryption for Secure and

Private Conversations”, IJMTST, Vol: 10, Issue:

02, Pages:130-136, 2024.

[15] Kommineni, K. K. ., & Prasad, A. . (2023).

A Review on Privacy and Security Improvement

Mechanisms in MANETs. International Journal

of Intelligent Systems and Applications in

Engineering, 12(2), 90–99. Retrieved from

https://ijisae.org/index.php/IJISAE/article/view/4

224

 [16] Kalyan Kumar Dasari, K Dr , “Mobile

Agent Applications in Intrusion Detection

System (IDS)‛-JASC, Vol: 4

Issue : 5, Pages: 97-103, 2017.

[17] V.Monica, D. Kalyan Kumar,

“BACKGROUND SUBTRACTION BY USING

DECOLOR ALGORITHM”, IJATCSE, Vol. 3 ,

No.1, Pages : 273 – 277 (2014).

[18] Netflix Prize Dataset (User behavior and

ratings): https://www.netflixprize.com

[19]Kaggle: Customer Churn Prediction

Datasets:

https://www.kaggle.com/datasets

[20] Kalyan Kumar Dasari & Dr, K Venkatesh

Sharma, “A Study on Network Security through

a Mobile Agent Based Intrusion Detection

Framework”, JASRAE, vol : 11, Pages: 209-214,

2016.

[21] Dr.D.Kalyankumar, Saranam Kavyasri,

Mandadi Mohan Manikanta, Pandrangi Veera

Sekhara Rao, GanugapantaVenkata Pavan

Reddy, “Build a Tool for Digital Forensics to

Analyze and Recover Information from

Compromised Systems”, IJMTST, Vol: 10,

Issue: 02, Pages:173-180, 2024.

 [22] Kalyankumar Dasari, Mohmad Ahmed Ali,

NB Shankara, K Deepthi Reddy, M Bhavsingh,

K Samunnisa, “A Novel IoT-Driven Model for

Real-Time Urban Wildlife Health and Safety

Monitoring in Smart Cities” 2024 8th

International Conference on I-SMAC, Pages

122-129.

[23] Dr.D.Kalyankumar, Panyam Bhanu

Latha, Y. Manikanta Kalyan, Kancheti

https://ieeexplore.ieee.org/abstract/document/10774815/
https://ieeexplore.ieee.org/abstract/document/10774815/
https://ieeexplore.ieee.org/abstract/document/10774815/
https://ieeexplore.ieee.org/abstract/document/10721919/
https://ieeexplore.ieee.org/abstract/document/10721919/
https://ieeexplore.ieee.org/abstract/document/10721919/
https://www.sciencedirect.com/science/article/pii/S1877050919315523
https://www.sciencedirect.com/science/article/pii/S1877050919315523
https://arxiv.org/abs/2001.01537
https://www.sciencedirect.com/science/article/pii/S095741742100587X
https://www.sciencedirect.com/science/article/pii/S095741742100587X
https://www.netflixprize.com/
https://www.kaggle.com/datasets
https://scholar.google.com/scholar?cluster=13679199945635805437&hl=en&oi=scholarr
https://scholar.google.com/scholar?cluster=13679199945635805437&hl=en&oi=scholarr
https://scholar.google.com/scholar?cluster=13679199945635805437&hl=en&oi=scholarr
https://ieeexplore.ieee.org/abstract/document/10714601/
https://ieeexplore.ieee.org/abstract/document/10714601/
https://ieeexplore.ieee.org/abstract/document/10714601/

199 Vol.20, No.01(I), January-June: 2025

Deepu Prabhunadh, Siddi Pavan Kumar,

“A Proactive Defense Mechanism

against Cyber Threats Using Next-

Generation Intrusion Detection System”,

IJMTST, Vol: 10, Issue: 02, Pages:110-

116, 2024.

